当前位置: 知识学习 > 面积的概念三年级

面积的概念三年级

  • 分类:知识学习
  • 更新时间:2025-04-28
  • 发布时间:2024-05-14 11:45:16
三年级面积的概念是物体的表面或者封闭图形所占地方的大小。面积是表示平面中二维图形或形状或平面层的程度的数量。表面积是三维物体的二维表面上的模拟物。面积可以理解为具有给定厚度的材料的量,面积是形成形状的模型所必需的,或者用单一涂层覆盖表面所需
内容详情

三年级面积的概念是物体的表面或者封闭图形所占地方的大小。

面积是表示平面中二维图形或形状或平面层的程度的数量。表面积是三维物体的二维表面上的模拟物。面积可以理解为具有给定厚度的材料的量,面积是形成形状的模型所必需的,或者用单一涂层覆盖表面所需的涂料量。它是曲线长度或实体体积的二维模拟。

可以通过将固定尺寸的形状与正方形进行比较来测量形状的面积。在国际单位制中,标准单位面积为平方米,面积为一米长的正方形面积面积为三平方米的形状将与三个这样的广场相同。在数学中,单位正方形被定义为具有区域,任何其他形状或表面的面积都是无量纲实数。

有几种众所周知的简单形状的公式,如三角形,矩形和圆形。使用这些公式,可以通过将多边形分成三角形来找到任何多边形的面积。对于具有弯曲边界的形状,通常需要微积分来计算面积。事实上,确定飞机数字面积的问题是演算历史发展的主要动机。

常见面积定理

1、一个图形的面积等于它的各部分面积的和;

2、两个全等图形的面积相等;

3、等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;

4、等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;

5、相似三角形的面积比等于相似比的平方;

6、等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;

7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对X求积分。

长方形的面积公式几年级学的

梯形的面积是三年级学的。

梯形介绍如下:

梯形(trapezoid)是只有一组对边平行的四边形,平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底。

另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形right trapezoid。两腰相等的梯形叫等腰梯形(isosceles trapezoid)。

面积介绍如下:

当物体占据的空间是二维空间时,所占空间的大小叫做该物体的面积,面积可以是平面的也可以是曲面的。平方米、平方分米、平方厘米,是公认的面积单位。

面积是表示平面中二维图形或形状或平面层的程度的数量。表面积是三维物体的二维表面上的模拟物。面积可以理解为具有给定厚度的材料的量,面积是形成形状的模型所必需的。

面积的简介介绍如下:

面积是表示平面中二维图形或形状或平面层的程度的数量。表面积是三维物体的二维表面上的模拟物。

面积可以理解为具有给定厚度的材料的量,面积是形成形状的模型所必需的,或者用单一涂层覆盖表面所需的涂料量。它是曲线长度(一维概念)或实体体积(三维概念)的二维模拟。

有几种众所周知的简单形状的公式,如三角形,矩形和圆形。使用这些公式,可以通过将多边形分成三角形来找到任何多边形的面积。对于具有弯曲边界的形状,通常需要微积分来计算面积。事实上,确定飞机数字面积的问题是演算历史发展的主要动机。

对于诸如球体,锥体或圆柱体的实体形状,其边界面的面积被称为表面积,简单形状的表面区域的公式由古希腊人计算,但计算更复杂形状的表面积通常需要多变量微积分。

小学三年级数学教学:面积的含义

长方形的面积公式几年级学的

 长方形的面积公式几年级学的,长方形面积为长*宽,一般是在小学三年级下册学习相关知识,在这个学期,除了学习长方形面积的计算公式,还需要学习其他公式,如正方形面积计算公式,位置与方向等相关知识,下面分享长方形的面积公式几年级学的相关内容。

长方形的面积公式几年级学的1

 人教版是小学三年级下册数学长方形与正方形的面积学的。

  三年级数学下册必背公式概念

  位置与方向

 1、口诀要牢记:上北下南,左西右东。

 2、东与西相对,南与北相对。(东北对西南 ,东南对西北) 东→南→西→北,是按顺时针方向转。

 3、地图通常是按上北下南,左西右东绘制的。一共有8个方向:

 东、南、西、北、东北、东南、西北和西南。

 南与北相对,东与西相对,西北与东南相对,东北与西南相对。

 4、知道其中一个方向,可以通过顺时针方向按东、南、西、北的顺序确定其它的方向。

 5、判断一个地方在什么方向,先要找到一个物体为观察点 ,再进行判断。

 6、判断方向我们一般使用:指南针和借助身边的事物。我国早在两千多年就发明了指示方向的——司南。

长方形的面积公式几年级学的2

 长方形的面积公式是小学三年级下册学的。

 长方形的面积=长*宽。

  三年级数学下册必背公式概念

  面积

 1、物体的表面或封闭图形的大小,就是它们的面积。围成一个图形的所有边长的总和叫周长。

 2、比较两个图形面积的大小,要用统一的面积单位来测量。

 3、常用的.面积单位有平方厘米(cm)平方分米(dm)平方米(m)。

 ①边长1厘米的正方形,面积是1平方厘米;

 ②边长1分米的正方形,面积是1平方分米。

 ③边长1米的正方形,面积是1平方米。

 4、长方形的面积=长×宽

 正方形的面积=边长×边长

 长方形的周长=(长+宽)×2

 正方形的周长=边长×4

 已知面积求长:长=面积÷宽

 已知面积求边长:边长=面积开平方

 已知面积求宽:宽=面积÷长

 已知周长求边长:边长=周长÷4

 已知周长求长:长=周长÷2-宽

 地砖的块数=房间的面积÷每块地砖的面积

 每块地砖的面积=房间的面积÷地砖的块数

 房间的面积=每块地砖的面积×地砖的块数

 5、面积单位之间的进率。(相邻的两个面积单位的进率是100)

 1平方分米=100平方厘米

 1平方米=100平方分米

 *平方米变成平方分米加上2个0,平方分米变成平方米去掉2个0,平方米变成平方厘米加上4个0,平方厘米变成平方米去掉4个0,平方分米变成平方厘米加上2个0,平方厘米变成平方分米去掉2个0,长度单位之间的进率(相邻的两个长度单位的进率是10)

 1分米=10厘米 1米=10分米 1千米=1000米

 6、周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。

这篇《小学三年级数学教学:面积的含义》,是 特地为大家整理的,希望对大家有所帮助!

本课程要引导学生通过观察、实际操作等活动认识面积的含义,初步学会比较物体表面和平面图形的大小,在学习活动中,要体会数学和生活联系,锻炼数学思考能力,发展空间概念,激发进一步学习和探索的兴趣

一、说教材:

1、说教学内容

我说课的内容是苏教版国标本小学数学三年级下册P74-77《面积的含义》

2、说教材中的地位

本课内容是第九单元《长方形和正方形的面积》的第一课时,是学生学习了长方形和正方形以及它们的周长计算的基础上来进行教学的。教材通过学生观察,比较,触摸所熟悉的物体表面的大小来帮助理解面积。面积的学习,是学生第一次接触,相对较难,学生学了这部分内容,为以后学习长方形、正方形、圆形等平面几何图形的面积打下基础。

3、根据新课标的要求,我从知识与能力、过程与方法、情感态度与价值观三个维度设计了本课的教学目标:

(1)结合实例,认识图形面积的含义。

(2)经历比较两个图形面积大小的过程,体验比较策略的多样性。

(3)体验数学知识缘于生活,生活中处处有数学;在探究中张扬个性,养成良好的学习习惯。

4、基于对教材的理解和分析,我确定了如下的教学重、难点:

教学重点:通过观察,认识面积的含义。

教学难点:学会比较物体表面和平面图形面积的大小。

二、说教法、学法:

学生在二年级已经认识了物体的面,真切感知过面是什么,也认识了长方形正方形平行四边形这样的平面图形。在这样的基础上引导学生认识“面积”这个抽象的概念,同时面积又是学生进一步认识平面图形或物体的面所必备的基础知识。三年级学生具有一定的动手操作能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。

1、 教法:

本节课主要运用了比较法,通过不同物体的面或平面图形的比较,使学生认识到面积是有大有小的。使学生在比较中理解比较面积大小的方法,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。

2.学法:

动手操作:通过学生动手操作,比较出面积的大小。

自主探究:比较面积大小时,进行小组合作交流探索出多种方法,从而比较出面积的大小。

三、说教学过程:

根据以上的理念,结合本课的特点,我设计了以下5教学环节:

1、 初步感知,认识面积

看——看黑板表面,课本封面,体会物体有面。

比——比黑板表面与数学书封面哪一个比较大,哪一个比较小,体会各个物体的面都有确定的大小。

听——听懂“黑板表面的大小就是黑板面的面积,它比数学书封面的面积大”这句话的意思,首次感知面积的含义。

摸——摸数学书封面和课桌面,体会这些面客观存在,感受这些面各自面积的大小。

说——举例说说物体表面的面积,并比比它们的大小。

新课开始,让学生运用已有的生活经验,先比较黑板的表面与课本封面的大小,引出面积的初步含义,接着让学生进一步比较课桌面和凳子面的面积的大小,并说说生活中其他物体表面的面积大小。在“说”的环节让学生在更大的范围里体会:看到的物体都有面,每个面的大小就是这个面的面积,从而使学生形成初步的面积概念。

2、 操作实验,比较大小

⑴认识平面图形的面积

①教师把刚才的正方体的一个面画在黑板上,出现一个正方形,也就是一个平面图形。

②提问:这个正方形有面积吗?

③指名一位同学用粉笔画出它的面积,其他同学在课堂练习本上画一个平面图形,用水彩笔涂上它的面积,然后继续画一个面积比刚才更小的图形。

学生在前面的例题里已经知道物体表面的大小是面积,通过这一环节的学习,由具体的面过渡到平面图形,知道了平面图形的大小也是面积,这样,他们对面积意义的理解就更全面了。

⑵比较平面图形的面积大小

①课件出示例2,引导学生读题。

②如果学生说是直接看出大小,在肯定的基础上提醒学生:直接观察大小,有时不太可靠,启发学生探索其他的比较方法。

③动手操作之前,提出几点说明:这些小纸就代表题目中的正方形和长方形;可以使用老师提供的透明方格纸、小纸条等,老师更欣赏你能用自己身边的材料来比较;如果你不会的话,就看看周围同学是怎么比的,相信你会受到启发的。

④交流汇报,引导学生总结出常用的三种方法:看、叠、量。

⑤举反例。用两根毛线分别围着它们的边围了一圈,然后比一比这两根毛线的长度。学生判断这是比的面积吗?比的是什么?

使学生经历从直接观察比较面积大小到用其他方法来比较大小,充分发挥了学生学习的主动性,在同桌讨论、交流、动手操作探究比较方法的过程当中,培养学生自主学习的能力,动手操作的能力,合作交流的意识,使学生掌握常用的比较方法。

3、实践运用,解决问题

①分辨面积和周长。用动作表示面积和周长,老师口述生活中的事情,让学生判断和什么有关。

②完成“想想做做”第2题。主要通过观察来比较。

③完成“想想做做”第3题。启发学生思考比较的方法,重点指导怎样数梯形所包含的方格数。

④指导学生完成“想想做做”第5题。这是一道开放题,要留出充分的时间让学生自由选择图形进行面积比较,对于其中面积相近的图形,只要说出差不多就可以了。

让学生在不同的应用中体会比较的方法随具体情况的变化而变化,从而加深对几种面积比较的方法的理解,体会它们在实际生活中的应用。

4、全课总结,反思得失

引导学生反思:通过今天的学习,有什么收获?还有什么疑问?

5、课外拓展,升华认识

游戏名:猜一猜。游戏规则:全班分两组,这边的同学看图形时,那边的同学要闭上眼睛,不能偷看。第一组看的是4格的,第二组看的是6格的,让学生在不知道格子大小的情况下根据格子数判断两个图形的大小。

通过讨论得出:比较两个图形面积时,格子的大小要一样。

这个环节的设计,让学生明白在用数个子的方法比较面积大小时,格子的大小必须是一样的,否则就不好比较,活跃了课堂气氛,更重要的是对下一个课时面积单位的学习有着积极的影响。

点击查看全部内容