当前位置: 知识学习 > 高考最后40天,如何提高数学压轴题能力?

高考最后40天,如何提高数学压轴题能力?

  • 分类:知识学习
  • 更新时间:2024-12-22
  • 发布时间:2024-05-12 21:20:09
高考数学试卷中的最后两道题是“压轴题”。这两道题做得好坏,在一定程度上决定着考生的总成绩。所以提高这两道题的得分率就显得十分重要。这两道题一般是一个解析几何题,一个代数题。这两道题蕴含的知识丰富,综合性较强,解答过程中对数学知识、数学方法和
内容详情

高考数学试卷中的最后两道题是“压轴题”。这两道题做得好坏,在一定程度上决定着考生的总成绩。所以提高这两道题的得分率就显得十分重要。这两道题一般是一个解析几何题,一个代数题。这两道题蕴含的知识丰富,综合性较强,解答过程中对数学知识、数学方法和数学能力有较高的要求。想坐稳压轴题,需要多做题,更需要对概念有更深层的理解,真正难的题,不是会套公式就行了,还需要对概念的成立条件,适用范围定位。

祝你高考取得好成绩

高考数学压轴题有技巧吗?

高考数学的压轴题可以说是整个数学考试科目里难度最大的试题。有一些同学可能由于考试时间比较仓促,时间不够用;还有一些同学干脆就认为肯定做不出来,还没看题,就已经放弃压轴题了。其实,压轴题没有大家想象中那么可怕,只要慢慢静下心来认真思考、推论,还是可以做出来的。下面我为大家总结整理了数学压轴题的解题方法,供大家参考。

高考数学压轴题解题方法

一、函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;

方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。

同学们在解题时可利用转化思想进行函数与方程间的相互转化。

二、数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。

同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

三、特殊与一般的思想

这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。

不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

四、极限思想解题步骤

极限思想解决问题的一般步骤为:

1、对于所求的未知量,先设法构思一个与它有关的变量;

2、确认这变量通过无限过程的结果就是所求的未知量;

3、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

五、分类讨论思想

同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

高考数学压轴题解题思路

1.复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。

2.运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。

3.一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。

求高考数学压轴题不等式证明心得思路

数学高考试卷的最后一题压轴题很难拿分,往往在答题前,就已经先入为主地认为做不出是意料之内的事情,以至于很多考生在压轴题上得分都很低,这是非常可惜的。

首先同学们要正确认识压轴题

压轴题主要出在函数,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!

其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!

以2009年的上海高考数学卷的压轴题为例,分析其中一半左右分值的易得分部分,谈一谈解题心态。同学可以再做一下2010年的高考卷最后一题,或者今年二模卷的最后一题,能否拿到比以往更多的分数。

2009年高考数学上海卷23题:

第二重要心态:千万不要分心

其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。高考时,你是不可能这么想的。你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。

专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!

第三重要心态:重视审题

你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。

在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!

最高境界就是任何一道题目,在你心中没有难易之分,心中只有根据题目条件推出新条件,一直推到最终的结论。解题心态也应当是宠辱不惊,不以题目易而喜,不以题目难而悲,平常心解题。

最后还有一点要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。

一。放缩,基本放缩要很熟练(如lnx和x-1),熟练到你有意识要用这基本放缩。还有就是用前俩问得出的结论进 行放缩(并不一定是前俩问要证明的东西,可能是证明前俩问推导过程中间的式子)。

如果第三问要你证明一个很突兀的式子,一时没思路的话你最好先看看前俩问自己的证明,可能就会灵光一现了。

二。直接给的函数,数列证明题。这个靠基础了,如拉格朗日,不动点,特征根等一些超纲的知识你知道要去用(一般从题目形式就能看出)。但最好别直接使用超纲定理,公式。那样会扣很多分,最好先自己给出证明。

三。见多识广。如利用 定积分定义证明数列和型不等式。。移动坐标系证明解析几何斜率的一些结论。。使用极坐标方程解决解析几何中焦半径系列问题。很多方法你只有做过了才知道,才会有条件反射。

四:回归基础,这个却是是王道。最多20分钟没思路的话就放了吧。

点击查看全部内容